SIM Science Working Group

 \vdash

S

Space Interferometry Mission SIM System Testbeds (STB-1,3)

23 April 1998

Robert A. Laskin

STB-3 Objectives

- Technology Risk Reduction Objectives (TRV Matrix Derived)
 - Demonstrate Interferometer Full Complexity Functionality
 - > 3 Baseline Interferometer
 - Demonstrate System Level Vibration Attenuation
 - > Guide Interferometer Stabilization
 - > Science Interferometer Stabilization -- Angle and Pathlength Feedforward
 - > Interferometer Stabilization for Nulling
 - Validate Integrated Modeling Methodology & Tools
 - "Pathfind" Instrument Integration & Test Approach
- Project Support Objectives
 - Test Interferometer On-board Data Handling
 - Test Interferometer Ground Data System
 - Trouble Shooting During Mission Operations
- STB-3 Will Not:
 - Do Picometer Metrology Demonstration
 - Do Thermo-Mechanical Performance Testing
 - Do Deployments

STB-3 Test Suite -- Top Level

\geq	
\vdash	
S	

Required Tests	Flight Value	Testbed Value	Notes
<u>Functional Tests</u>			
- Autonomous Alignment	Full-up	Same	
- Interferometer Calibration	Full-up	Partial	
- Interferometer Diagnostics	Full-up	Partial	
- ACS Slew & Settle	4 , TBD settle time	1°, TBD settle time	Limited motion
- Guide Star Acq, Track, & ReAcq	2 stars per tile	2 star positions	Guidestars fixed
- Science Star Acq, Track & Re Acq	15 stars per tile	Same	
- Hexapod Slew & Settle	+/- 7.5°, TBD settle time	Same	
- Collector Pod Slew & Settle	Continuous steps	Same	To Be Reviewed
- Maintain Met Lock During Slews	All slews	Same	
- Maintain Guide Lock During Slews	All slews (TBR)	Same	
- On-board Data Handling	Full-up	Partial	
- Ground Data System	Full-up	Partial	
Performance Tests			
- Guide Star Fringe Acquisition	80 nm	80 nm	
- Guide Star Angle Acquisition	1 arcsec	1 arcsec	
- Guide Star Fringe Tracking	10 nm	10 nm	
- Guide Star Angle Tracking	30 mas	30 mas	
- Science Star Fringe Tracking	10 nm	10 nm	Partial spectrum
- Science Star Angle Tracking	30 mas	30 mas	Partial spectrum
- Science Star Fringe Acquisition	25 um	25 um	
- Science Star Angle Acquisition	3 arcsec	3 arcsec	
- Interferometer Nulling Stabilization	1 nm, TBD mas	1 nm, TBD mas	Partial spectrum

Testbed Cartoon

Hardback Structure

2 Collector Pods

- Realtime Interferometer Control Software
- Realtime Interferometer Control Electronics

STB-3 Test Article -- Top Level Requirements

		1 1	
	Assembly	Requirement	Notes
	<u>Hardback Structure</u>		
	- Spacecraft	Mass simulator, disturbance source (shaker)	RW's TBD
\geq	- Interferometer Structure	HiFi dynamically, no deployments	Material open
		Cable & blanket emulators	
	Combiner Pod		
	- Beam Combiners	Flight-like (incl detectors & det packaging, not elex)	No nulling BC
	- Delay Lines	Flight-like	
	- Metrology Source	Good enough for 100's pm metrology	
	- Alignment & Fold Mirrors	Flight-like	TBR
	- Structure	HiFi dynamically, cable & blanket emulators	Material open
	Collector Pods		
	- Compressors	Full size primary not required, output beam full size	Correct mass
		Optical qualityTBD waves rms (worse than flight)	
	- Hexapods	Flight-like (struts may not have flight lube/seals)	
	- Fiducial	Flight-like mechanically, sensors, beacon	
		Optical good enough for 100's pm metrology	
	- Acquisition Camera	Off-the-shelf	Correct Mass
	- Steering Mirrors	Flight-like	TBR
	- Structure	HiFi Dynamically, cable & blanket emulators	
	Realtime Control Software		
Smaga	- Astrometry Tile Ops	Full-up functionality	
Space Interferometry	- Auto Alignment	Full-up functionality	
Mission	- Calibration, Imaging, Diagnostic Ops	Partial functionality	
	Realtime Control Electronics	Not Flight-like	Off-board
	Fixed Delay Compensator	HiFi Dynamically	

R. A. Laskin: - 6 PISRR 17-18 March 98 STB-3

• Facility

Pseudo Star

• SE Equipment Software

• Support Structure & Scaffolding

STB-3 Test Environment -- Top Level Requirements

	Unit	Requirement	Notes
	Facility		
	- Seismic Background	Better than MPI	MPI at 5 nm
	- Acoustic Noise	Better than MPI	MPI at 5 nm
\geq	- Highbay Height	Greater than 6 meters	TA suspension frequency
	- Air Handling	Controllable	Can be turned off
	- Temperature, Humidity	20 C - 25 C, 40 % - 50 %	TBR
	- Cleanliness	Class 100,000	Capable of class 10,000
	- Highbay Floor Space	3000 sq ft - 4000 sq ft	
	- Environmental Monitoring	Continuous	Including disturbances
	Test Article Suspension System		
	- Natural Frequency	Lower than 0.2 Hz	Separation from TA modes
7	- Positioning Accuracy	Less than 100 um, 2 arcsec	wrt lab frame
	Pseudo Star		
	- Number of stars	3	
	- Type	Inverse interferometer	
	- Waveband	0.4 um - 1.0 um	
	- Differential Accuarcy - pathlength	Less than 300 pm	Atmostphere limited
	- Differential Accuracy - tip/tilt	Less than2 arcsec	Decouple P/L & tip/tilt
	- Differential Stability - tip/tilt	Less than 10 mas	Atmosphere limited
	- Positioning Accuracy	Less than 100 um, 2 arcsec	wrt lab frame
	- Structure	Rigid as possible	Probably granite table
Space Interferometry	, - Suspension	Soft as possible	Must maintain positioning
Mission	Support Equipment Electronics	TBD	
	Support Equipment Software	TBD	
	Support Equipment Scaffolding	TBD	

S

Space Interferometry Mission

STB-3 Pseudo Star

- Supply a "stellar" reference to test the STB-3 test article
 - support all functional testing
 - support performance testing to limits of environment
- Current concept favors the inverse interferometer approach
 - MAM is exploring the point source version of the pseudo star
 - inverse interferometer looks most favorable for testing SIM flight instrument
- Pursuing inertially stabilized approach
 - stars mounted on a rigid, massive table
 - table maximally isolated from seismic and acoustic noise
 - stellar wavefronts tied to inertial space
 - > inertial sensing and optical feedback control
 - pseudo star independent of test article optically and mechanically

Pseudo Star Concept

Space Interferometry Mission

LINEAR MOTION of COLLECTOR PODS TO CHANGE BASLINE LENGTH

- 1) Three beam combiners shown. One of 3 interferometers shown for clarity
- 2) 3 complete interferometers needed in the Pseudo Star

No.

Space Interferometry Mission

STB3 Schedule

STB-1 Objectives

- Technology Risk Reduction Objectives
 - Demonstrate System Level Vibration Attenuation
 - > Guide Interferometer Stabilization
 - > Science Interferometer Stabilization -- Angle Feedforward only
 - > Interferometer Stabilization for Nulling
 - Validate Integrated Modeling Methodology & Tools
- Programmatic Objective
 - Mitigates STB-3 Schedule Risk
- STB-1 Will Not:
 - Demonstrate full complexity operation using prototype software
 - Be a flight instrument integration and test "dress rehersal"
 - Operate throughout project life cycle supporting data handling and mission operations

N I S

Space Interferometry Mission

STB-1 (aka MPI Testbed)

Space Interferometry Mission

Summary / Concerns

- STB-3 Will Demonstrate Interferometer Full Complexity Operations and Nanometer Class Vibration Attenuation
 - Lab Ambient Requirements Will Be Challenging
 - > Likely to Prevent Testing to Absolute Performance Levels in Portion of Frequency Band
 - Emulated On-Orbit Vibration Attenuation Testing Valid Over Entire Frequency Band
- All Critical SIM Vibration Attenuation Technology Tests Will Ultimately Be Conducted on STB-3
 - Some Will Be Completed After NAR (as best we understand job today)
 - Schedule Compression Will Be Vigorously Pursued
 - > Need to Keep It Real
- STB-1 Mitigates STB-3 Schedule Risk
 - Will Accomplish Several Vibration Attenuation Technology Demos --Less SIM-like Configuration
 - Many Lessons Will Be Learned for STB-3
- STB-3 Depends Heavily on RICST and Collector Pod Testbeds for High Quality and Timely Deliverables

Back-up Charts

Performance Assessment Procedure

\geq	
\vdash	
S	

Disturbance Type	Lab Ambientrandom seismicrandom acousticrandom air flow	Emulated On-Orbit - sine swept shaker - above lab noise floor
Test Measurement	OPD & Angle Jitter on Detectors	Transfer Functions from Shaker to Detectors - lab ambient is averaged
Control Strategy	Active Optics OnlyUnconstrained Loop Bandwidths	Active Optics + IsolationFlight Traceable Loop Bandwidths
Results	Demonstrate System Can Operate at Required Absolute Precision	Demonstrate System Can Provide the Required Level of Vibration Attenuation

Space Interferometry Mission

Bottom Line:

We Have Solved a Harder Problem in the Lab Than in Space

Summary -- STB-3 Performance Testing

- Emulated On-Orbit Testing Provides the Key Performance Metric
 - Valid across entire vibrational frequency spectrum
- Lab Ambient Testing Is Necessary to Demonstrate That Actuators, Sensors, and Controllers Function at the Required Resolution
 - Sufficient if demonstrated across limited frequency band
 - Problem frequency band: .01 Hz 1 Hz (atmospheric effects)
 - This is a minor regret
- STB-3 Will Provide a Robust Test Environment to Accomplish Nanometer Class Vibration Attenuation Performance Testing

STB-3 Top View

